Fabrication of complex metallic nanostructures by nanoskiving.

نویسندگان

  • Qiaobing Xu
  • Robert M Rioux
  • George M Whitesides
چکیده

This paper describes the use of nanoskiving to fabricate complex metallic nanostructures by sectioning polymer slabs containing small, embedded metal structures. This method begins with the deposition of thin metallic films on an epoxy substrate by e-beam evaporation or sputtering. After embedding the thin metallic film in an epoxy matrix, sectioning (in a plane perpendicular or parallel to the metal film) with an ultramicrotome generates sections (which can be as thin as 50 nm) of epoxy containing metallic nanostructures. The cross-sectional dimensions of the metal wires embedded in the resulting thin epoxy sections are controlled by the thickness of the evaporated metal film (which can be as small as 20 nm) and the thickness of the sections cut by the ultramicrotome; this work uses a standard 45 degrees diamond knife and routinely generates slabs 50 nm thick. The embedded nanostructures can be transferred to, and positioned on, planar or curved substrates by manipulating the thin polymer film. Removal of the epoxy matrix by etching with an oxygen plasma generates free-standing metallic nanostructures. Nanoskiving can fabricate complex nanostructures that are difficult or impossible to achieve by other methods of nanofabrication. These include multilayer structures, structures on curved surfaces, structures that span gaps, structures in less familiar materials, structures with high aspect ratios, and large-area structures comprising two-dimensional periodic arrays. This paper illustrates one class of application of these nanostructures: frequency-selective surfaces at mid-IR wavelengths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free-standing NiTi alloy nanowires fabricated by nanoskiving.

We report on free-standing NiTi alloy nanowires (120 nm × 75 nm) fabricated using a technique referred to as "nanoskiving", which complements conventional thin film sputter deposition with ultramicrotomy for thin sectioning. To date, the technique has been limited to pure metals without exploring metallic alloys. Leveraging the technique for the fabrication of shape memory alloy (SMA) nanostruc...

متن کامل

Fabrication of large-area patterned nanostructures for optical applications by nanoskiving.

Cost-effective and convenient methods for fabrication of patterned metallic nanostructures over the large (mm2) areas required for applications in photonics are much needed. In this paper, we demonstrate the fabrication of arrays of closed and open, loop-shaped nanostructures by a technique (nanoskiving) that combines thin-film deposition by metal evaporation with thin-film sectioning. These ar...

متن کامل

Nanoskiving: a new method to produce arrays of nanostructures.

This Account reviews nanoskiving--a new technique that combines thin-film deposition of metal on a topographically contoured substrate with sectioning using an ultramicrotome--as a method of fabricating nanostructures that could replace conventional top-down techniques in selected applications. Photolithography and scanning beam lithography, conventional top-down techniques to generate nanoscal...

متن کامل

Patterning the tips of optical fibers with metallic nanostructures using nanoskiving.

Convenient and inexpensive methods to pattern the facets of optical fibers with metallic nanostructures would enable many applications. This communication reports a method to generate and transfer arrays of metallic nanostructures to the cleaved facets of optical fibers. The process relies on nanoskiving, in which an ultramicrotome, equipped with a diamond knife, sections epoxy nanostructures c...

متن کامل

Fabrication of high-aspect-ratio metallic nanostructures using nanoskiving.

This communication describes the fabrication of gold structures (for example, rings) with wall thickness of 40 nm, and with high aspect ratios up to 25. This technique combines thin-film deposition of metal on a topographically patterned epoxy substrate, with nanometer-scale sectioning using a microtome in a plane parallel to the patterned substrate. The dimensions of the metal structures are d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 1 3  شماره 

صفحات  -

تاریخ انتشار 2007